Further Pure 1 Past Paper Questions Pack B: Mark Scheme

Taken from MBP1, MBP3, MBP4, MBP5

Parabolas, Ellipses and Hyperbolas

Pure 3 January 2002

<u> </u>	ilual y 2002			
1(a)	G1	В1	1	
(b)(i)	J-6 0 x	M1 A1√	2	Idea of translation to left (ft their graph) Correct intercepts marked
(ii)	3 0 -3 x	M1 A1	2	$\sqrt{\ }$ reflected in $y = x$ Correct with intercepts marked on y - axis
	Total		5	

Pure 3 January 2003

3(a)	7	M1 A1		Ellipse Symmetrical with major axis in y-direction
	-4 O 4 x -7	B1	3	Intercepts 4 and 7
(b)	One way stretch in <i>x</i> -direction Scale factor $\frac{1}{2}$ Translation in <i>y</i> -direction 3 units	M1 A1 M1 A1	4	$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$
	Total		7	

2(a)		M1		
	Vertex at O, good sketch, symmetry obvious	A1	2	Essentially all correct
(b)	$x^2 = 8 y$ or equivalent	M1 A1	2	M1 for general idea
(c)	Translation; by vector $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	M1 A1	2	sc: B1 for correct description without "translation"
	Total		6	

Rational Functions and Asymptotes

Pure 3 January 2004

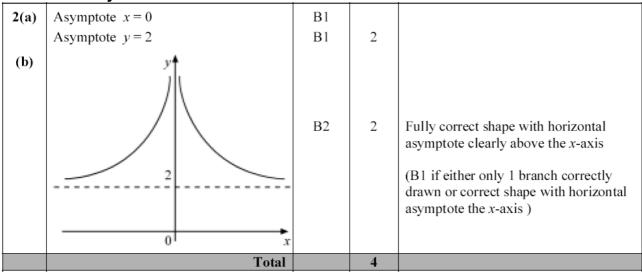
i are 5 de	illually 2007			
3(a)	a = 4 and $b = 1$	B1 B1	2	
(b)	Asymptotes $x = 1$, $y = 2$, $y = -2$ Graph: Correct for $y > 0$ Symmetry in x-axis All correct	B1 B1 B1 B1 B1	5	One correct; second correct Or B1 for each correct region E.g. $4/5$ for all correct graph but with asymptotes $x = 1, y = \pm 4$
	Total		7	
				1

	ilidai y 2002			
3(a)	0 3 x	M1 A1		Rectangular hyperbola, one branch Good sketch
	y = 5 $x = 3$	B1 B1		Asymptotes equations stated Allow single B1 if values only shown on graph (no equations
	$\left(\frac{7}{5},0\right)$ and $\left(0,\frac{7}{3}\right)$	B1	5	stated). Condone as values marked on graph
(b)	$x > 3$ $x < \frac{7}{5}$	B1 B1	2	

2(a)	(0,-2) accept $x = 0$, $y = -2$	B1 B1		
	$\left(-\frac{4}{3}, 0\right)$ accept $y = 0$, $x = -\frac{4}{3}$	Di		
	Asymptotes $x = 2$	B1		'x asymptote is 2, y asymptote is 3' - allow B1 only
	y=3	B1		$x \to 2, y \to 3$ B1 only
	<i>y</i> †	M1		One branch of hyperbola
	x	A1√	6	ft asymptotes
(b)	Appropriate method	M1		Multiply both sides by $(x-2)^2$
	Consideration of graph $y = 1 \Rightarrow 3x + 4 = x - 2$			$\frac{3x+4}{x-2} - 1 > 0$
	$\Rightarrow x = -3$			Considering $(x-2) > 0$ and $(x-2) < 0$
				$3(x+4)>(x-2) \Rightarrow x > -3$ only M0
	Solution: $x < -3$	A1	2	
	x > 2	A1	3	

Q	Solution	Marks	Total	Comments
1(a)	$(0, -\frac{3}{5})$ accept $x = 0$, $y = -\frac{3}{5}$	B1		
	$\frac{3}{4}$,0 accept $y = 0$, $x = \frac{3}{4}$	B1		
	Asymptotes $x = 2\frac{1}{2}$	B1		
	y = -2	B1		
	<i>y</i> ↑ <i>J</i>	M1		One branch of hyperbola
	2 21/2 x	A1√	6	ft asymptotes Condone lack of symmetry to show second branch
(b)	Appropriate method			Multiply both sides by $(2x-5)^2$
	Consideration of graph	M1		Considering $(2x-5) > 0$ and $(2x-5) < 0$
	$y = 0 \Rightarrow 3 - 4x = 0 \qquad \Rightarrow x = \frac{3}{4}$			$3-4x < 0 \Rightarrow x > \frac{3}{4}$ scores M0
	Solution: $x < \frac{3}{4}$	A 1		
	$x > 2\frac{1}{2}$	B1	3	
	Total		9	

Pure 5 Ju	une 2002			
7(a)	{Vert. Asym} $x = 2$ x = 1.5	B1 B1		
	{Horiz. Asym} $y = 1.5$	В1	3	sc If 0/3 give B1 for all three values seen
(b)(i)	$(2x-3)(x-2) = 2x^2 - 7x + 6$	B1		Can be gained in part (a) or (b)(i)
	$(2y-3)x^2 + (9-7y)x + 6y - 7 = 0$	M1 A1		Attempt to form quadratic in <i>x</i> Correct quadratic in <i>x</i>
	$\Delta = (9 - 7y)^2 - 4(2y - 3)(6y - 7)$	m1		Considers b^2 –4 ac
	$\dots y^2 + 2y - 3$	Al		
	$(y+3)(y-1)$	m1		Attempt to factorise or solve
	For real x , $\Delta \ge 0 \Rightarrow y \ge 1$ or $y \le -3$ \Rightarrow no real values of x for which $-3 < y < 1$	Al	7	ag
(b)(ii)	$y = 1 \Rightarrow -x^2 + 2x - 1 = 0 \Rightarrow x = 1$	M1		For subst $y = 1$ or $y = -3$ to form a valid
	$y = -3 \Rightarrow -9x^2 + 30x - 25 = 0 \Rightarrow x = 5/3$	m1		quadratic in x For a good attempt to solve a quadratic
	Turning points are $(1,1)$ and $(5/3, -3)$	A2,1	4	equation in x Allow A1 for one point correct
				sc If method implied by 'hence' not used then max 2/4 B2 for (1, 1) and (5/3, -3) B1 for any 2 of these 4 coordinates
	Total		14	



. 4.000				
3	$x^2 - 2yx + 2 - y \ (=0)$	M1		Attempt to form quadratic in x with y involved
		A1		Condone one sign error.
	$\Delta = (-2y)^2 - 4(1)(2-y)$	m1		Consider b^2 –4ac with y involved and no x's.
	$\dots 4(y^2+y-2) \\ \dots 4(y+2)(y-1)$	Al m1		oe eg '4' can be missing if linking 0 Attempt to factorise or solve a quadratic in y only
	For real x , $\Delta \ge 0 \Rightarrow y \ge 1$ or $y \le -2$ \Rightarrow no real values of x for which $-2 < y < 1$	A1	6	cao. Need b^2 – $4ac$ linked to an inequality ag Only award if no previous errors
	Total		6	

	Total		11	
	Also $x > \frac{1}{2}$	B1	3	
	$\Rightarrow x \le -\frac{3}{5}$	A1		
` '				eg simply multiplying up to give $3x + 4 \le 1 - 2x \Rightarrow M0$
(c)	Use of value from (b)	M1		If algebraic method – must be sound
	$\Rightarrow x = -\frac{3}{5}$	A1	2	
(b)	$3x + 4 = 1 - 2x \implies 5x = -3$	M1		
	x			
	V	A1	2	One branch roughly correct Good graph
(iii)	<i>y</i> ∱ j	M1		One branch roughly correct
	$y = -1\frac{1}{2}$	B1	2	
(ii)	Asymptote at $x = \frac{1}{2}$ and at	B1		
	$\left(-\frac{4}{3},0\right)$	В1	2	
2(a)(i)	(0,4) and	B1		

5(a)	nuary 2004 v = 1	B1	1	Must be the equation
		M1 A1	1	Attempt to form quadratic in x Correct quadratic in x
	$\Delta = (3y)^2 - 4(y-1)(3y)$	m1		Considers b^2 –4 ac
	$\dots -3y^2 + 12y$	A1		
	3 <i>y</i> (<i>y</i> -4)	m1		Attempt to factorise or solve
	For real $x, \Delta \ge 0 \Rightarrow 0 \le y \le 4$	A1	6	ag cso
(ii)	$y = 4 \Rightarrow 3x^2 + 12x + 12 = 0$	M1		Substitute $y = 4$ to form a 'valid' quadratic in x . (PI)
	$\Rightarrow x = -2$, turning point (-2, 4)	A1		If not using 'hence' then (-2, 4) is B1 max.
	$\{y = 0 \Rightarrow -x^2 = 0 \Rightarrow x = 0\}$			
	Turning point (0,0)	B1	3	
(c)	y ↑ 4-	B3,2,1	3	B1 for shape
				B1 for origin as only point where graph meets the axes
	2 0 x			B1 for correct behaviour at the 'end-points'
	Total		13	

	-4	B1	3	Single lower branch; shape and y not > -4 Dependent on previous two Bs. Asymptotic behaviour on both branches; through the origin
(c)		В1		Single upper branch; shape and y not < 0
(b)	Turning point (0,0) When $y = -4$, $x^2 + 4x + 4 = 0$ Turning point (-2, -4)	B1 M1 A1	3	Alternative Valid method to find $y'(x)$ and then puts $y'(x) = 0$ [M1] $x^2 + 2x = 0 \Rightarrow TPs(0,0)$ [A1] and $(-2, -4)$ [A1]
	$y = x - 1 + \frac{1}{x + 1}$ Asymptote $y = x - 1$	M1 A1	3	Full attempt to divide out
Pure 5 Ju	Asymptote $x = -1$	B1		

Complex Numbers

Pure 3 June 2002

4(a)	$z^2 = 4 - 12 - 8\sqrt{3}i$	M1		3 terms or $-8 + ki$
	$= -8 - 8\sqrt{3}i$	A1		
	$4z = -8 + 8\sqrt{3}i$			
	$\Rightarrow z^2 + 4z = -16$ oe	A1√	3	Answer is real or
				imaginary part shown to be zero ft provided it is real number
				re provided it is real number

6(a)(i)	-5 + 12 i	M1 A1	2		
(ii)	Squaring their answer to (i) or use of the binomial theorem: -119 - 120 i	M1 A1√	2	ft	

Roots of Quadratic Equations

9(a)(i)	$\alpha + \beta = -4; \alpha\beta = 13$	В1		
	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$	M1		or $(\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$ good attempt, correct in terms of
	= -64 + 156 = 92	A1 A1	4	$\alpha + \beta$ and $\alpha\beta$
(ii)	$= -64 + 156 = 92$ $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$	M1		
	$=\frac{92}{169}$	A1√	2	ft 'their' $\alpha^3 + \beta^3$
(b)	product of roots = $\frac{1}{\alpha\beta}$ = $\frac{1}{13}$	В1		
	$x^2 - \frac{92}{169}x + \frac{1}{13} = 0$	M1		their values – any variable
	$169x^2 - 92x + 13 = 0$	A 1	3	
(c)	$(x+2)^2 = -9 x+2 = \pm 3i$	M1 M1		or use of formula dealing with $\sqrt{-36}$
	Total		12	

1(a)(i) $\alpha + \beta = -4$; $\alpha\beta = -3$ B1 Likely to be earned in (ii)	
$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ M1	
=16+6=22 A1	
(ii) $\alpha^2 \beta^2 + 2(\alpha + \beta) + \frac{4}{\alpha \beta}$ B1	
$9-8-\frac{4}{3}$ M1 Substitution into similar for	rm as above
$=-\frac{1}{3}$ A1 6	
(b) Sum of roots	
$=\alpha^2+\beta^2+\frac{2}{\alpha}+\frac{2}{\beta}$	
$=\alpha^2 + \beta^2 + \frac{2}{\alpha\beta}(\alpha + \beta)$ M1	
$=22 + \frac{2}{-3} \times -4 = \frac{74}{3}$ A1	
New equation $y^2 - (\text{sum of new roots}) y + \text{product} = 0$ M1	
$\Rightarrow y^2 - \frac{74}{3}y - \frac{1}{3} = 0$	
$\Rightarrow 3v^2 - 74v - 1 = 0$ A1ft 4 (ft any variable fractional v	alues)
A = 0 Must have = 0	,
Total 10	

u u u	Danuary 2005			
7(a)	$\alpha + \beta = -3;$ $\alpha\beta = -2$	В1	1	
(b)(i)	$\frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2}$	M1 m1		
	$=\frac{13}{4}$	A1√	3	ft their (a) values
(ii)	$\alpha\beta - \frac{3}{\alpha} - \frac{3}{\beta} + \frac{9}{\alpha^2 \beta^2}$ $= \alpha\beta - \frac{3(\alpha + \beta)}{\alpha\beta} + \frac{9}{\alpha^2 \beta^2}$	М1		Good attempt at multiplying out
	$= \alpha\beta - \frac{3(\alpha + \beta)}{\alpha\beta} + \frac{9}{\alpha^2\beta^2}$	m1		In a form ready for substitution
	$=-\frac{17}{4}$	A1√	3	ft their (a) values
(c)	Sum of roots			
	$=\alpha+\beta-3\left(\frac{1}{\alpha^2}+\frac{1}{\beta^2}\right)$	M1		
	$=-3-\frac{39}{4}=-\frac{51}{4}$	A1		
	New equation			Condone single sign error or missing $= 0$
	$y^2 - (\text{sum of new roots}) y + \text{product} = 0$	M1		$\Rightarrow y^2 + \frac{51}{4}y - \frac{17}{4} = 0$
	$\Rightarrow 4y^2 + 51y - 17 = 0$	Al	4	Must have = 0
	Total		11	

-			l	1
9(a)(i)	$\alpha + \beta = 3; \qquad \alpha\beta = 1$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= 9 - 2 = 7$	B1 M1 A1	3	Withhold if obviously incorrect in (ii) ag However, condone (-3) ²
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2})$ $= 18$	M1 A1 A1	3	Good attempt at any equivalent Correct formula
(b)(i)	$(\alpha^2 + \beta^2)^2 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4$ $\Rightarrow \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$	В1	1	ag Be generous here.
(ii)	$\alpha^4 + \beta^4 = 49 - 2 = 47$	M1 A1	2	Substitute candidate's $\alpha\beta$
(c)	Sum of roots = $\alpha^3 + \beta^3 - (\alpha + \beta)$ = 15	M1 A1		
	Product = $(\alpha \beta)^3 + \alpha \beta - (\alpha^4 + \beta^4)$ = 1+1 - 47 = -45	M1 A1		Condone one slip
	New equation			
	$y^2 - 15y - 45 = 0$	B1√	5	ft any variable, integer coefficients Must have = 0
	Total		14	

	$(\alpha + \beta)^3 - 3 \alpha\beta(\alpha + \beta)$ $\Rightarrow \alpha^3 + \beta^3 = 10$			Or $(\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$ & $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
	$\Rightarrow \alpha^{2} + \beta^{3} = 10$	A1	3	ag
(iii)	$\frac{\alpha^3 + \beta^3}{(\alpha \beta)^3} = \frac{10}{27}$	M1 A1	2	
(b)	New product of roots = $\frac{1}{(\alpha\beta)^3} = \frac{1}{27}$ $x^2 - [\text{cand's (a) (iii)}] x + [\text{cand's product}]$	B1		
	$\Rightarrow 27x^2 - 10x + 1 = 0$	M1 A1√	3	ft Must have integer coefficients and be an equation
	Total		10	

	Total		9	
	p = -4, p = -6	A1	3	
	$p^2 + 10p + 49 = 25 \implies p^2 + 10p + 24 = 0$	M1		May be using 5 etc instead of 25
(ii)	$\left(\alpha - \beta\right)^2 = 25$	В1		
		A1	2	ag
(c)(i)	$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$ = $p^2 + 12p + 49 - 2p = p^2 + 10p + 49$	M1		
		A1	2	oe $p^2 + 12p + 49$
(b)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $= (7 + p)^{2} - 2p$	M1		
	$\alpha\beta = p$	B1	2	
3(a)(i)	$\alpha + \beta = -(7 + p)$	B1		

Series

Pure 1 June 2003

	Total		8	
(c)	Use of (a)(ii) -6325 (b) = 0	M1 A1	2	
(5)	H	MI		sc B2 for correct answer without working
	= 3775	A1	3	sc B3 for correct answer without working
	correct values substituted, candidate's 25 (51+100)	m1		Or candidate's $50 \times 101 - 25 \times 51$
(b)	$S_n = \frac{1}{2}n(2a + (n-1)d)$ formula attempted (condone one slip)	M1		Or $\frac{n(\text{first} + \text{last})}{2}$ attempted Or $S_{100} - S_{50/51/49}$ using $\sum r = \frac{1}{2}n(n+1)$
(ii)	Attempt to find $S_{100} - S_{50}$ using $\sum r^3$ = 23 876 875	M1 A1	2	Formula in booklet. Condone $S_{100} - \begin{cases} S_{51} \\ S_{49} \end{cases}$
3(a)(i)	25 502 500	В1	1	
	1			t

Pure 1 June 2004

6 (a)	Use of $\frac{n}{6}(n+1)(2n+1)$	M1		$\frac{29}{6} \times 30 \times 59$
	= 8 555	A1	2	
(b) (i)	common difference, $d = 4$	B1		
	Use of $a+(r-1)d$	M1		Condone $a + (n-1)d$
	$u_r = 4r - 1$	A1	3	Condone $4n-1$
(ii)	Upper limit 200 and lower limit 1 on \sum	B1		Or equivalent
	$\sum_{r=1}^{200} 4r - 1$	B1√	2	ft their u_r (ignore limits)
				Two B marks are independent
	Total		7	

Calculus

Pure 1 June 2004

(d) (i)	$y(1+h) = 1 + 2h + h^2 - 6 - 6h + 10$	M1		Subs $1 + h$ and attempt to multiply out
	Gradient = $\frac{y(1+h) - y(1)}{h}$	m1		y(1) = 5
	$=\frac{h^2-4h}{h}=h-4$	A1	3	ag
(ii)	As $h \rightarrow 0$, gradient at $P = -4$	B1	1	Must use limit and not calculus rule

Linear Laws

Pure 3 January 2002

6(a)	$\ln E = \ln K + \alpha \ln B$	В1	1	
(b)	ln B 1.151 2.258 2.907			3.367 3.723
	ln E 0 0.693 1.099	B2		1.386 1.609
	plotting points – roughly correct	(-1 ee) M1	3	
(c)	straight line of reasonable fit	B1	1	
(d)(i)	$B = 25.5 \qquad \Rightarrow \ln B = 3.2387$	M1		
	From graph $\ln E \approx 1.31$	M1		
	$\Rightarrow E = 3.7$	A 1	3	Condone 3.6 to 3.8
(ii)	gradient = $\alpha = \frac{\Delta \ln E}{\Delta \ln B}$ = $\frac{1.792}{2.865} \approx 0.63$	M1 A1		Condone 0.62 to 0.64
	Intercept used/or 2 points	M1		full attempt to find k
	$k \approx 0.48 / 0.49$	A1	4	
	Total		12	

	daniaary 2000			
5(a)	In 1.43 = 0.358	M1		
	From graph $\ln P = 2.4$	m1		Expected in range 2.43 to 2.45
	Hence $P = 11.4/5/6$	A1	3	Follow through their values within range
(b)(i)	$ \ln P = \ln k + \alpha \ln x $	В1	1	
(ii)	In k is intercept on vertical axis	M1		ln k = 1.9 (or use of formula)
	k = 6.7 (to 2 SF)	A1		
	Gradient of graph gives α	M1		M0 if further wrong calculation using
	$\alpha = 1.5$ (to 2 SF)	A1	4	exponentials
	Total		8	

i uie 3 3t	1116 2003			
7(a)	2.52	B1		Seen (even if log of this value taken)
	$N = 10^{2.52}$	M1		
	= 331	A1	3	Accept 300 or 330 following correct logs
(b)(i)	$\log_{10} N = \log_{10} a + t \log_{10} b$	В2	2	B1 if $\ln used \text{ or } \log_{10} b^t \text{ not simplified}$
(ii)	$\log_{10} a$ is intercept on $\log_{10} N$ axis	M1		$\log_{10} a = 2.4$
	a = 251	A1		Must be 3sf or better
	Gradient is $\log_{10} b = \frac{0.12}{5}$ etc	M1		
	b = 1.06	A1	4	Must be 3sf or better
				May score M1 for setting up 2 equations
				M1 for solving one or two equations
				A2, 1 for correct answers
(c)	Growth limited by test tube; some die etc	E1	1	
	Total		10	

Pure 3 January 2004

5(a)	$ \ln Q = \ln a + b \ln x $	B1	1	
(b)(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1 B1	3	Most correct At most one error Reasonably accurately
(ii)	"Good" line of best fit drawn	В1	1	
(c)(i)	$\ln Q = 1.29 - 1.30 \implies Q \approx 3.6 - 3.7$	M1 A1	2	
(ii)	Method for finding gradient: $b = 2.5$ Reading off y-intercept: $\ln a \approx 2.8$	M1 A1 M1		± 0.1 Give M marks for simultaneous equations approach
	a = 16 - 17	A1	4	
	Total		11	

Pure 3 June 2004

6(a)	$\ln 3 = 1.0986$ $\ln y = 1.33$	M1 m1		Condone 1.30 to 1.35
	y = 3.8	A1	3	Accept 3.7 to 3.9
(b)(i)	$ \ln y = \ln A + n \ln x $	В1	1	
(ii)	$\ln A = 0.80$ (intercept on $\ln y$ -axis) A = 2.2 n = gradient of line	M1 A1 M1		Condone value rounding to this
	= 0.48	A1	4	Accept value rounding to 0.47, 0.48 or 0.49
	Total		8	

Numerical Methods

Pure 4 January 2002

	y =00=			
2(a)	$p\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{8}\right) - 5\left(\frac{1}{4}\right) + 2$	M1		must attempt $p\left(-\frac{1}{2}\right)$ or long division to remainder.
	$= 0.25 \Rightarrow \text{Remainder} = 0.25$	A 1	2	
(b)	$p'(x) = 12x^2 - 10x$	B1		denominator 8 may imply B1
	-0.5 - p(-0.5)/p'(-0.5)	M1		
	$=-0.5 - \frac{0.25}{8} = -0.531$	A1	3	condone more sf
	Total		5	

Pure 4 January 2003

	Touridary 2005			
2(a)	$x \ln 2 = \ln 7$	M1		May use log ₁₀
	$\Rightarrow x = 2.81$	A1	2	2.80735 Accept more than 3 SF
(b) (i)	$f(x) = 2^x - 7 + x ;$			
(1)	f(2.0) = -1; $f(2.4) = 0.678$			
	\Rightarrow root lies in interval (2.0, 2.4)	В1	1	Or equivalent considering both sides but must contain a valid conclusion
(ii)	Considering f(2.2) first	M1		M0 if bisection method NOT used
	f(2.2) = -0.2052			
	\Rightarrow root lies in interval (2.2, 2.4)	A1		
	f(2.3) = 0.224			
	\Rightarrow root lies in interval (2.2, 2.3)	A1	3	SC1 if correct interval given but bisection method not used
	Total		6	

Pure 4 June 2003

5(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 + 2\cos 2x$	M1 A1	2	$k \cos 2x$ or $k \cos x$ correct derivative
(ii)	$0.2 - \frac{y(0.2)}{y'(0.2)}$ = 0.255 to 3 sig figs	M1 A1	2	Used, since formula in booklet Must be to 3sf

i uie 4 Ju	die 4 Julie 2004							
4(a)	p(3) = 27 - 54 + 36 - 11	M1		Must consider p(3) or full long division to remainder				
(b)(i)	=-2 (is remainder) p(4) = 64 - 96 + 48 - 11 = 5	A1	2					
	[Change of sign] $\Rightarrow \alpha$ lies between 3 and 4	B1	1	Both p(3) and p(4) must be correct and there must be some statement/conclusion				
(ii)	p(3.5) used first (=0.375)	M1		\Rightarrow root lies between 3 and 3.5				
	p(3.25) = -1.046875	m1						
	\Rightarrow root lies between 3.25 and 3.5	B1	3					

Matrix Transformations

Pure 3 January 2002

2(a)	Shear invariant line $y = 0$ mapping $(0, 1)$ to $(1,1)$ o.e	M1 A1	2	
(b)	$A^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$	M1		
	$A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$	A1	2	
	Total		4	

2(a)	$M^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$	M1		Attempt to multiply matrices correctly Correct
	$M^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	A1	3	
(b)	Rotation (about origin)	M1		
	through $\frac{2\pi}{3}$ (anticlockwise)	A1	2	Or equivalent clockwise turn
	Total		5	
	10001			