Further Pure 1 Past Paper Questions Pack B: Mark Scheme

Taken from MBP1, MBP3, MBP4, MBP5

Parabolas, Ellipses and Hyperbolas
Pure 3 January 2002

1(a)	G1	B1	1	
(b)(i)	y_{\uparrow}	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	2	Idea of translation to left (ft their graph) Correct intercepts marked
(ii)		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	\checkmark reflected in $y=x$ Correct with intercepts marked on y - axis
	Total		5	

Pure 3 January 2003

3(a)		M1		Ellipse
		A1		Symmetrical with major axis in y-direction
		B1	3	Intercepts 4 and 7
(b)	One way stretch in x-direction	M1		
	Scale factor $\frac{1}{2}$	A1		
	Translation in y-direction	M1		$\left[\begin{array}{l}0 \\ 3\end{array}\right]$
			4	[3]
	Total		7	

Pure 3 January 2004

2(a)	\subset - shaped parabola Vertex at O, good sketch, symmetry obvious	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Essentially all correct
(b)	$x^{2}=8 y$ or equivalent	M1 A1	2	M1 for general idea
(c)	Translation; by vector $\left[\begin{array}{l}2 \\ 0\end{array}\right]$	M1 A1	2	sc: B1 for correct description without "translation"
	Total		6	

Rational Functions and Asymptotes

Pure 3 January 2004

3(a) (b)	$a=4 \text { and } b=1$ Asymptotes $x=1, y=2, y=-2$ Graph: Correct for $y>0$ Symmetry in x-axis All correct	$\begin{gathered} \text { B1 B1 } \\ \text { B1 B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{gathered}$	2 5	One correct; second correct Or B1 for each correct region E.g. $4 / 5$ for all correct graph but with asymptotes $x=1, y= \pm 4$
	Total		7	

Pure 3 January 2002

3(a)					

Pure 3 June 2002

2(a)				
	$\left(-\frac{4}{3}, 0\right) \text { accept } y=0, x=-\frac{4}{3}$	B1		
	Asymptotes $\quad \begin{aligned} x & =2 \\ y & =3\end{aligned}$	B1 B1		' x asymptote is $2, y$ asymptote is 3 ' allow B1 only $x \rightarrow 2, y \rightarrow 3 \quad \text { B1 only }$
	-	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	6	One branch of hyperbola ft asymptotes
(b)	Appropriate method	M1		Multiply both sides by $(x-2)^{2}$
	Consideration of graph $y=1 \Rightarrow 3 x+4=x-2$			$\frac{3 x+4}{x-2}-1>0$
	$\Rightarrow x=-3$			$\begin{aligned} & \text { Considering }(x-2)>0 \text { and }(x-2)<0 \\ & 3(x+4)>(x-2) \Rightarrow x>-3 \text { only M0 } \end{aligned}$
	Solution: $\quad x<-3$	Al	3	
	Total		9	

Pure 3 January 2003

7(a)	$\begin{array}{ll} \text { \{Vert. Asym....\} } & x=2 \\ & x=1.5 \\ \{\text { Horiz. Asym...\} } & y=1.5 \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	sc If $0 / 3$ give B1 for all three values seen
(b)(i)	$(2 x-3)(x-2)=2 x^{2}-7 x+6$	B1		Can be gained in part (a) or (b)(i)
	$(2 y-3) x^{2}+(9-7 y) x+6 y-7 \quad\{=0\}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Attempt to form quadratic in x Correct quadratic in x
	$\Delta=(9-7 y)^{2}-4(2 y-3)(6 y-7)$	m1		Considers $b^{2}-4 a c$
 $y^{2}+2 y-3$	A1		
	$\ldots \ldots(y+3)(y-1)$	m1		Attempt to factorise or solve
	For real $x, \Delta \geq 0 \Rightarrow y \geq 1$ or $y \leq-3$ \Rightarrow no real values of x for which $-3<y<1$	A1	7	ag
(b)(ii)	$\begin{aligned} & y=1 \Rightarrow-x^{2}+2 x-1=0 \Rightarrow x=1 \\ & y=-3 \Rightarrow-9 x^{2}+30 x-25=0 \Rightarrow x=5 / 3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \mathrm{ml} \end{aligned}$		For subst $y=1$ or $y=-3$ to form a valid quadratic in x For a good attempt to solve a quadratic equation in x
	Turning points are (1,1) and ($5 / 3,-3$)	A2,1	4	Allow Al for one point correct
				sc If method implied by 'hence' not used then max $2 / 4$ B2 for $(1,1)$ and $(5 / 3,-3)$ B1 for any 2 of these 4 coordinates
	Total		14	

Pure 5 January 2003

Pure 5 June 2003

3	$x^{2}-2 y x+2-y(=0)$	M1		Attempt to form quadratic in x with y involved
		A1		Condone one sign error.
	$\Delta=(-2 y)^{2}-4(1)(2-y)$	m1		Consider $b^{2}-4 a c$ with y involved and no x 's.
	$\begin{aligned} & \ldots .4\left(y^{2}+y-2\right) \\ & \ldots . .4(y+2)(y-1) \end{aligned}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~m} 1 \end{aligned}$		oe eg '4' can be missing if linking 0 Attempt to factorise or solve a quadratic in y only
	For real $x, \Delta \geq 0 \Rightarrow y \geq 1$ or $y \leq-2$ \Rightarrow no real values of x for which $-2<y<1$	A1	6	cao. Need $b^{2}-4 a c$ linked to an inequality ag Only award if no previous errors
	Total		6	

Pure 3 June 2004

Pure 5 January 2004

5(a)	$y=1$	B1	1	Must be the equation
(b)(i)	$(y-1) x^{2}+3 y x+3 y \quad\{=0\}$	M1 A1		Attempt to form quadratic in x Correct quadratic in x
	$\Delta=(3 y)^{2}-4(y-1)(3 y)$	m1		Considers $b^{2}-4 a c$
 $-3 y^{2}+12 y$	A1		
 $-3 y(y-4)$	m1		Attempt to factorise or solve
	For real $x, \Delta \geq 0 \Rightarrow 0 \leq y \leq 4$	A1	6	ag cso
(ii)	$y=4 \Rightarrow 3 x^{2}+12 x+12=0$	M1		Substitute $y=4$ to form a 'valid' quadratic in x. (PI)
	$\begin{aligned} & \Rightarrow x=-2, \text { turning point }(-2,4) \\ & \left\{y=0 \Rightarrow-x^{2}=0 \Rightarrow x=0\right\} \end{aligned}$	A1		If not using 'hence' then ($-2,4$) is B1 max.
	Turning point (0,0)	B1	3	
(c)	$\bigcap \quad \begin{gathered} y \uparrow \\ 4- \end{gathered}$	B3,2,1	3	B1 for shape
				B1 for origin as only point where graph meets the axes
				B1 for correct behaviour at the 'endpoints'
	Total		13	

Pure 5 June 2004

5(a)	Asymptote $x=-1$ $y=x-1+\frac{1}{x+1}$	B1 M1		Full attempt to divide out
	Asymptote $y=x-1$	A1	3	
(b)	Turning point $(0,0)$ When $y=-4, x^{2}+4 x+4=0$ Turning point $(-2,-4)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	$$
		B1		Single upper branch; shape and y not <0
		B1		Single lower branch; shape and y not >-4
	-4	B1	3	Dependent on previous two Bs. Asymptotic behaviour on both branches; through the origin
	Total		9	

Complex Numbers

Pure 3 June 2002

Pure 3 January 2004

$6(\mathrm{a})(\mathrm{i})$	$-5+12 \mathrm{i}$	$\mathrm{M1} \mathrm{A1}$	2	
(ii)	Squaring their answer to (i) or use of the binomial theorem: $-119-120 \mathrm{i}$	$\mathrm{M1} \checkmark$	2	ft

Roots of Quadratic Equations

Pure 3 January 2002

1(a)(i)	$\alpha+\beta=-4 ; \quad \alpha \beta=-3$	B1		Likely to be earned in (ii)
	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$	M1		oe
	$=16+6=22$	A1		
(ii)	$\alpha^{2} \beta^{2}+2(\alpha+\beta)+\frac{4}{\alpha \beta}$	B1		
	$9-8-\frac{4}{3}$	M1		Substitution into similar form as above
	$=-\frac{1}{3}$	A1	6	
(b)	Sum of roots $=\alpha^{2}+\beta^{2}+\frac{2}{\alpha}+\frac{2}{\beta}$			
	$=\alpha^{2}+\beta^{2}+\frac{2}{\alpha \beta}(\alpha+\beta)$	M1		
	$=22+\frac{2}{-3} \times-4=\frac{74}{3}$	A1		
	New equation $y^{2}-($ sum of new roots $) y+$ product $=0$	M1		
	$\Rightarrow y^{2}-\frac{74}{3} y-\frac{1}{3}=0$			
	$\Rightarrow 3 y^{2}-74 y-1=0$	Alft	4	(ft any variable fractional values) $\text { Must have }=0$
	Total		10	

Pure 3 January 2003

7(a)	$\alpha+\beta=-3 ; \quad \alpha \beta=-2$	B 1	1	
(b)(i)	$\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}$	$\begin{aligned} & \text { M1 } \\ & \mathrm{ml} \end{aligned}$		
	$=\frac{13}{4}$	Al \checkmark	3	ft their (a) values
(ii)	$\alpha \beta-\frac{3}{\alpha}-\frac{3}{\beta}+\frac{9}{\alpha^{2} \beta^{2}}$	M1		Good attempt at multiplying out
	$=\alpha \beta-\frac{3(\alpha+\beta)}{\alpha \beta}+\frac{9}{\alpha^{2} \beta^{2}}$	ml		In a form ready for substitution
	$=-\frac{17}{4}$	$\mathrm{Al} \checkmark$	3	ft their (a) values
(c)	Sum of roots			
	$=\alpha+\beta-3\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}\right)$	M1		
	$=-3-\frac{39}{4}=-\frac{51}{4}$	Al		
	New equation			Condone single sign error or missing $=0$
	$y^{2}-(\text { sum of new roots }) y+\text { product }=0$	M1		$\Rightarrow y^{2}+\frac{51}{4} y-\frac{17}{4}=0$
	$\Rightarrow 4 y^{2}+51 y-17=0$	Al	4	Must have $=0$
	Total		11	

9(a)(i)	$\alpha+\beta=3 ; \quad \alpha \beta=1$	B1		Withhold if obviously incorrect in (ii)
	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$	M1		
	$=9-2=7$	A1	3	ag However, condone (-3$)^{2}$
(ii)	$\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Good attempt at any equivalent Correct formula
	$=18$	A1	3	
(b)(i)	$\left(\alpha^{2}+\beta^{2}\right)^{2}=\alpha^{4}+2 \alpha^{2} \beta^{2}+\beta^{4}$			
	$\Rightarrow \alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2(\alpha \beta)^{2}$	B1	1	ag Be generous here.
(ii)	$\begin{aligned} & \alpha^{4}+\beta^{4}=49-2 \\ & =47 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Substitute candidate's $\alpha \beta$
(c)	$\begin{array}{r} \text { Sum of roots }=\alpha^{3}+\beta^{3}-(\alpha+\beta) \\ =15 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		
	$\begin{aligned} & \text { Product }=(\alpha \beta)^{3}+\alpha \beta-\left(\alpha^{4}+\beta^{4}\right) \\ & =1+1-47=-45 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Condone one slip
	New equation			
	$y^{2}-15 y-45=0$	B1〕	5	ft any variable, integer coefficients Must have $=0$
	Total		14	

Pure 3 January 2004

Pure 3 June 2004

$3(\mathrm{a})(\mathrm{i})$ (b)	$\alpha+\beta=-(7+p)$	B1	2	oe $p^{2}+12 p+49$
	$\alpha \beta=p$	B1		
	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$	M1		
	$=(7+p)^{2}-2 p$	A1	2	
(c)(i)	$(\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \alpha \beta$	M1		
	$=p^{2}+12 p+49-2 p=p^{2}+10 p+49$	A1	2	ag
(ii)	$(\alpha-\beta)^{2}=25$	B1		
	$\begin{aligned} p^{2}+10 p+49 & =25 \Rightarrow p^{2}+10 p+24=0 \\ p & =-4, p=-6 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	3	May be using 5 etc instead of 25
	Total		9	

Series

Pure 1 June 2003

3(a)(i)	25502500	B1	1	
(ii)		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Formula in booklet. Condone $S_{100}-\left\{\begin{array}{l}S_{51} \\ S_{49}\end{array}\right.$
(b)	$S_{n}=\frac{1}{2} n(2 a+(n-1) d)$ formula attempted (condone one slip)	M1		Or $\frac{n \text { (first + last) }}{2}$ attempted Or $S_{100}-S_{50 / 51 / 49}$ using $\sum r=\frac{1}{2} n(n+1)$
	correct values substituted, candidate's $25(51+100)$	m1		Or candidate's $50 \times 101-25 \times 51$
	$=3775$	Al	3	sc B3 for correct answer without working sc B2 for correct answer without working
(c)	Use of (a)(ii) - 6325 (b) $=0$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	
	Total		8	

Pure 1 June 2004

Calculus

Pure 1 June 2004

(d) (i)	$y(1+h)=1+2 h+h^{2}-6-6 h+10$ Gradient $=\frac{y(1+h)-y(1)}{h}$	M1		Subs $1+h$ and attempt to multiply out
	A1	3	ag	
$=\frac{h^{2}-4 h}{h}=h-4$	B1	1	Must use limit and not calculus rule	
(ii)	As $h \rightarrow 0$, gradient at $P=-4$			

Linear Laws

Pure 3 January 2002

6(a)	$\ln E=\ln K+\alpha \ln B$	B1	1	
(b)	$\begin{array}{lllll}\ln B & 1.151 & 2.258 & 2.907\end{array}$			$3.367 \quad 3.723$
	$\begin{array}{lllll}\ln E & 0 & 0.693 & 1.099\end{array}$	$\begin{gathered} \mathrm{B} 2 \\ (-1 \mathrm{ee}) \end{gathered}$		1.3861 .609
	plotting points - roughly correct	M1	3	
(c)	straight line of reasonable fit	B1	1	
(d)(i)	$B=25.5 \quad \Rightarrow \ln B=3.2387$	M1		
	From graph $\ln E \approx 1.31$	M1		
	$\Rightarrow E=3.7$	A1	3	Condone 3.6 to 3.8
(ii)	$\begin{aligned} & \text { gradient }=\alpha=\frac{\Delta \ln E}{\Delta \ln B} \\ & =\frac{1.792}{2.865} \approx 0.63 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Condone 0.62 to 0.64
	Intercept used/or 2 points	M1		full attempt to find k
	$k \approx 0.48 / 0.49$	A1	4	
	Total		12	

Pure 3 January 2003

5(a)	$\ln 1.43=0.358 \ldots$	M1	3	Expected in range 2.43 to 2.45 Follow through their values within range
	From graph $\ln P=2.4 \ldots$	ml		
	Hence $P=11.4 / 5 / 6$	Al		
(b)(i) (ii)	$\ln P=\ln k+\alpha \ln x$	B1	1	
	$\ln k$ is intercept on vertical axis	M1		$\ln k=1.9$ (or use of formula)
	$k=6.7($ to 2 SF)	Al		
	Gradient of graph gives α	M1		M0 if further wrong calculation using
	$\alpha=1.5$ (to 2 SF)	Al	4	
	Total		8	

Pure 3 June 2003

Pure 3 January 2004

5(a)	$\ln Q=\ln a+b \ln x$	B1	1	
(b)(i)	$\ln x:-0.92-0.69$-0.51-0.36 -0.22	B1		Most correct At most one error Reasonably accurately
	$\begin{array}{llllll}\ln Q: & 0.54 & 1.11 & 1.56 & 1.94 & 2.28\end{array}$	B1		
	Points plotted on graph provided	B1	3	
(ii)	"Good" line of best fit drawn	B1	1	
(c)(i)	$\ln Q=1.29-1.30 \Rightarrow Q \approx 3.6-3.7$	M1 A1	2	
(ii)	Method for finding gradient: $b=2.5$ Reading off y-intercept: $\quad \ln a \approx 2.8$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 } \end{aligned}$		± 0.1 Give M marks for simultaneous equations approach
	$a=16-17$	A1	4	
	Total		11	

Pure 3 June 2004

6(a)	$\begin{aligned} & \ln 3=1.0986 \ldots \\ & \ln y=1.33 \\ & \quad y=3.8 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	Condone 1.30 to 1.35 Accept 3.7 to 3.9
(b)(i)	$\ln y=\ln A+n \ln x$	B1	1	
(ii)	$\ln A=0.80$ (intercept on $\ln y$-axis) $A=2.2$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Condone value rounding to this
	$n=$ gradient of line $\quad=0.48$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	Accept value rounding to $0.47,0.48$ or 0.49
	Total		8	

Numerical Methods

Pure 4 January 2002

2(a)	$\mathrm{p}\left(-\frac{1}{2}\right)=4\left(-\frac{1}{8}\right)-5\left(\frac{1}{4}\right)+2$	M1		must attempt $\mathrm{p}\left(-\frac{1}{2}\right)$ or long division to remainder.
$=0.25 \Rightarrow$ Remainder $=0.25$				
(b)	$\mathrm{p}^{\prime}(x)=12 x^{2}-10 x$			
$-0.5-\mathrm{p}(-0.5) / \mathrm{p}^{\prime}(-0.5)$				
$=-0.5-\frac{0.25}{8}=-0.531$	A 1	2		
B 1		denominator 8 may imply B1		
		Al	3	condone more sf

Pure 4 January 2003

2(a)	$x \ln 2=\ln 7$	M1		May use $\log _{10}$
	$\Rightarrow x=2.81$	A1		2.80735... Accept more than 3 SF
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\mathrm{f}(\mathrm{x})=2^{x}-7+x ;$		2	
	$f(2.0)=-1 ; f(2.4)=0.678 \ldots$			
	\Rightarrow root lies in interval ($2.0,2.4$)	B1	1	Or equivalent considering both sides but must contain a valid conclusion
(ii)	Considering $f(2.2)$ first $f(2.2)=-0.2052 \ldots$	M1		M0 if bisection method NOT used
	$\begin{array}{r} \Rightarrow \text { root lies in interval }(2.2,2.4) \\ \qquad f(2.3)=0.224 \ldots \end{array}$	Al		
	\Rightarrow root lies in interval ($2.2,2.3$)	Al	3	SC 1 if correct interval given but bisection method not used
	Total		6	

Pure 4 June 2003

5(a)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2+2 \cos 2 x$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	$k \cos 2 x$ or $k \cos x$ correct derivative
(ii)	$0.2-\frac{y(0.2)}{y^{\prime}(0.2)}$	M1		Used, since formula in booklet
	$=0.255$ to 3 sig figs	A1	2	Must be to 3sf

Pure 4 June 2004

4(a)	$p(3)=27-54+36-11$	M1		Must consider $\mathrm{p}(3)$ or full long division to remainder
	$=-2 \quad($ is remainder $)$	A1	2	
(b)(i)	$\mathrm{p}(4)=64-96+48-11=5$ [Change of sign] $\Rightarrow \alpha$ lies between 3 and 4	B1	1	Both $p(3)$ and $p(4)$ must be correct and there must be some statement/conclusion
(ii)	$\begin{aligned} & \mathrm{p}(3.5) \text { used first }(=0.375) \\ & \mathrm{p}(3.25)=-1.046875 \\ & \Rightarrow \text { root lies between } 3.25 \text { and } 3.5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { B1 } \end{aligned}$	3	\Rightarrow root lies between 3 and 3.5

Matrix Transformations

Pure 3 January 2002

2(a)	Shear invariant line $y=0$ mapping $(0,1)$ to (1,1) o.e	M1		
(b)	$\mathrm{A}^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$			
$\mathrm{A}^{3}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$	M1	2		
		A1	2	

Pure 3 January 2003

2(a)	$M^{2}=\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right]$	M1		Attempt to multiply matrices correctly
(b)	$\left.\begin{array}{ll}\text { Rotation (about origin) } \\ \text { through } \frac{2 \pi}{3} \text { (anticlockwise) } & \\ 0 & 1\end{array}\right]$	A1	3	Correct

